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ABSTRACT: A Robin boundary condition at the down-
stream surface of stretched membrane is used to study dif-
fusion through swollen polymer membranes. Four dimen-
sionless parameters are used to describe the diffusion pro-
cess. These parameters are associated with the effect of
swelling, relaxation, and retardation times of the polymer

matrix as well as the normal derivative condition at the
downstream side of the membrane. The effect of these four
parameters is discussed. � 2007 Wiley Periodicals, Inc. J Appl
Polym Sci 108: 47–51, 2008
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INTRODUCTION

In a recent paper, Liu et al.1 discussed mass transport
through swelling membranes. In that paper the con-
centration at the downstream side of the membrane
was assumed to be zero. However, as in the case of
geomembranes (landfill liners for example), the pollu-
tants seep into another medium.2–4 An appropriate
boundary condition for such a case is that the concen-
tration gradient is proportional to the concentration at
the downstream side of the membrane.5

MATHEMATICAL FORMULATION
AND SOLUTION

We start with the nondimensional form in Liu et al.1

qc
qt

¼ q2c
qx2

þ g1
q2s
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(1)

g2
qs
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þ s ¼ cþ g3
qc
qt

(2)

where c andr refer to permeant concentration and stress
on the polymermembrane, respectively. The dimension-
less parameters g1; g2; g3 are defined as follows1

g1 ¼ En=D; g2 ¼
b1

ðL2=DÞ ; g3 ¼
b2

ðL2=DÞ (3)

where D is the molecular diffusion coefficient, E is a
stress-driven (elastic) diffusion coefficient, b1 is a relax-
ation time, and b2 is a retardation time (expressed in a
Jeffreys’ type model1). The parameter m relates the equi-
librium stress with the concentration of the solvent.

The initial and boundary conditions are

cðx; 0Þ ¼ 0;

sðx; 0Þ ¼ 0;

cð0; tÞ ¼ 1;

qc
qx

ð1; tÞ ¼ acð1; tÞ; a < 0

(4)

Eliminating r from eqs. (1) and (2), yields
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Assuming c ¼ XðxÞTðtÞ and using the separation of
variables method, we obtain

g2T
00 þ T0

ð1þ g1ÞT þ ðg2 þ g1g3ÞT0 ¼
X00

X
¼ �Z2 (6)

where h is a parameter. For h ¼ 0, the appropriate
solution satisfying the boundary conditions is

X0 ¼ 1þ a
1� a

x; T ¼ 1; a < 0 (7)

We assume that Xhð0Þ ¼ 0 and X0
hð1Þ ¼ aXhð1Þ for

other (nontrivial) values of the parameter h. Thus,
h ¼ hs, s ¼ 1;2; ::: Xs / sinhsx, and Ts ¼Ase

�k1ðsÞt þ
Bse

�k2ðsÞt, where hs are the roots of the transcendental
equation
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a tanZ ¼ Z (8)

thus,

XsTs ¼ ½Ase
�l1ðsÞt þ Bse

�l2ðsÞt� sinZsx (9)

with

l1;2ðsÞ ¼
h
W6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � 4Z2

sg2ð1þ g1Þ
p i

2g2
(10)

and

W ¼ 1þ Z2
s ðg2 þ g1g3Þ (11)

Note that the characteristic functions sinhsx are or-
thogonal. The complete solution for c is then given
by

cðx; tÞ ¼ 1þ a
1� a

xþ
X1
s¼1
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(12)

Using the orthogonality of sinhsx and the initial con-
dition, we have

As þ Bs ¼ � 2ða2 þ Z2
s Þ

Zsða2 þ Z2
s � aÞ (13)

We need one more relation between As and Bs in
order to completely determine the solution. This
relation is obtained by solving for r, using eqs. (2)
and (12), and then insuring compatibility of the solu-
tions for c and r with respect to eq. (1). Equation (2)
can be expressed as
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Using eq. (12), the solution for eq. (14) is
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Combining eqs. (1), (12), and (15), we obtain
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1� l2g2

Bs ¼ 0 (16)

and eq. (15) reduces to
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Via eqs. (13) and (16), we determine

As ¼ 2ð1� l2g3Þð1� l1g2Þða2 þ Z2
s Þ

Zsða2 þ Z2
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The expressions for cðx; tÞ and rðx; tÞ are given by
eqs. (12), (15), and (16).

Clearly the stress remains finite at equilibrium.
The dimensionless form of the flux F* at x* 5 1 is
given by
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In dimensional form eq. (19) becomes
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Note that the results for the paper by Liu et al.1

can be obtained for the limiting case where c
becomes zero at x� ¼ 1, which corresponds to the
(mathematical) limiting case a ¼ �1.

DISCUSSION

As discussed by Liu et al.,1 g1; g2; g3 relate to the swel-
ling of the polymer matrix. The magnitude of the neg-
ative variable g1 is associated with the effect of the
polymer relaxation on the diffusion process. Parame-
ter g2 is a dimensionless time, which relates to the rate
of polymer relaxation. A second dimensionless time
g3, is associated with the polymer retardation rate.
The model considers not only diffusion of a specific
solvent into a polymer membrane, but also interac-
tions between the solvent and the polymer.

In this contribution, a Robin boundary condition is
used to better simulate conditions that would prevail in

the case of solvent diffusion through geomembranes.4–6

The Robin boundary condition includes an important
variable a. Figure 1(a) shows the effect of a on the
dimensionless flux versus dimensionless time profile
predicted by eq. (19). The values of the variables
g1 ¼ 0; g2 ¼ 1; g3 ¼ 0 represent a Fickian diffusion
process. Note that eq. (8) is used to determine hs when
a is set. Figure 1(a) illustrates that the steady state flux
decreases with increasing (decreasing in magnitude)
a. As a ! 0; F� ! 0 and as a ! �1; F� ! 1. Accord-
ing to the boundary condition, eq. (4), �1=a can be
treated as a resistance for penetrant diffusion from the
downstream side of the membrane into the environ-
ment. As a ! 0, the resistance �1=a is infinite; that is:
no penetrant can diffuse across the membrane down-
stream boundary. This corresponds to a zero flux. As
a ! �1 (i.e. zero resistance), all penetrant reaching
the downstream side of the membrane enters the envi-
ronment. Figure 1(b) shows the normalization of flux
under the same conditions as Figure 1(a). As the mag-
nitude of a decreases, (corresponding to a larger re-
sistance �1=a), more time is needed to reach steady
state.

Figure 2 shows the concentration distribution
profile for a specific case where g1 ¼ �0:1; g2 ¼ 1;
g3 ¼ 0;a ¼ �0:1. As the nondimensional time t*
increases, the concentration at the membrane down-
stream boundary c�ð1; t�Þ increases to attain a steady
concentration. According to eq. (12), as

t� ! 1; c�ðx�; t�Þ ¼ 1þ a
1� a

x� (21)

which is a linear distribution, as illustrated in Figure
2. When a ! 0 and t� ! 1, c�ðx�; t�Þ ! 1. When
a ¼ �1 and t� ! 1, c�ð1; t�Þ ¼ 0, which is the case
discussed in Liu et al.1

Figure 1 Effect of a on the diffusion process
(g1 ¼ 0; g2 ¼ 1; g3 ¼ 0): (n), a ¼ �1; (~), a ¼ �10; (&),
a ¼ �1; (~), a ¼ �0:1.

Figure 2 Concentration distribution profiles for
(g1 ¼ �0:1; g2 ¼ 1; g3 ¼ 0;a ¼ �0:1).
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Figure 3 shows the effect of g1 on the flux versus
time profile. As previously discussed,1,7 g1 is associ-
ated with the effect of polymer swelling on the diffu-
sion process. To show the significant role of g1, we
choose g2 ¼ 1; g3 ¼ 0;a ¼ �1. When g1 ¼ 0, (swelling
has no effect on diffusion), one recovers Fickian dif-
fusion. As g1 decreases (increase in the magnitude of
g1), polymer swelling (polymer relaxation) gains im-
portance. The diffusion process becomes non-Fick-
ian, as shown in Figure 3, where g1 ¼ �0:5. A signif-
icant overshoot appears in the flux profile. Another
aspect of the effect of g1 is that it decreases the
steady state flux. This corresponds to a negative con-
vective flux as a result of polymer swelling.

The effect of g2 on the prediction of the flux is
shown in Figure 4. We choose g1 ¼ �0:5; g3 ¼ 0;
a ¼ �1 to clearly show the importance of g2. This
variable, which is a dimensionless time, similar to
the Deborah number De in Ref. 8–10, relates to the
rate of polymer relaxation. When g2 is very small
(polymer chain relaxation is substantially faster than
the diffusion time scale), the diffusion approaches
Fickian diffusion (n in Fig. 4). When g2 is of order
one (the polymer relaxation time is of the same
order of magnitude as the diffusion time), polymer
structural arrangements accompany the diffusion
process. This results in an overshoot in the flux pro-
file. The non-Fickian behavior is shown as (& in Fig.
4). When g2 is very large (the relaxation time is less
than the diffusion time), the relaxation of the poly-
mer may not be able to affect the diffusion process
at short times, again generating Fickian like behav-

ior. However, at longer times, the flux will decrease
due to the negative convective flux caused by poly-
mer swelling. As shown in Figure 4 [~], the flux
approaches Fickian behavior at short times.

The other dimensionless time g3 is associated with
a polymer retardation time,1,7 related to creep behav-
ior.11,12 Thus, g3 is a time scale associated with the
swelling process, whereas g2, is associated with the
relaxation process. As shown in Figure 5, when g3
increases (the swelling process takes more time), the

Figure 3 Effect of g1 on the diffusion process
(g2 ¼ 1; g3 ¼ 0;a ¼ �1): (n), g1 ¼ 0; (&), g1 ¼ �0:1; (~),
g1 ¼ �0:5.

Figure 4 Effect of g2 on the diffusion process
(g1 ¼ �0:5; g3 ¼ 0;a ¼ �1): (n), g2 ¼ 0:1; (&), g2 ¼ 1; (~),
g2 ¼ 10.

Figure 5 Effect of g3 on the diffusion process
(g1 ¼ �0:5; g2 ¼ 1;a ¼ �1): (n), g3 ¼ 0; (&), g3 ¼ 0:4; (~),
g3 ¼ 0:8.
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flux curves shifts to the right, reflecting the longer
time required to reach steady state.

In summary, we developed a model to study mass
transport through swelling polymer membranes via
a Robin boundary condition. Four dimensionless pa-
rameters, associated with polymer swelling, relaxa-
tion/retardation times, and resistance to diffusion
from the downstream side of the membrane, are
used to describe the diffusion process.
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